INTRODUCTION

- Heart failure (HF) currently affects an estimated 6.5 million adults in the United States, of which approximately 50% have HF with preserved ejection fraction (HFpEF).
- Despite normal or near normal left ventricular ejection fraction, HFpEF is associated with increased morbidity and mortality.
- The complex pathophysiology of HFpEF remains incompletely understood.
- Inflammation and left ventricular (LV) fibrosis play an important role in the development of HFpEF.
- We have previously shown that low level transcutaneous vagus nerve stimulation (LLTS) is antiarrhythmic and anti-inflammatory.

PURPOSE

- The goal of this study was to determine the effect of chronic intermittent LLTS on cardiac fibrosis, diastolic dysfunction, and left ventricular (LV) gene expression in a rat model of HFpEF.

METHODS

- Dahl salt-sensitive (DSS) rats of either sex were randomized into high salt (HS, 8% NaCl) or low salt (LS) diet (0.3% NaCl) at 7 weeks of age.
- After 6 weeks of LS or HS diets, HS rats were randomized into 4 groups: HS rats, HS sham LLTS, HS active LLTS plus Methyllycaconitine (MLA) (n=36), a specific blocker of α7-nicotinic acetylcholine receptor (a7nAChR), which mediates the anti-inflammatory effects of LLTS.
- Stimulation was delivered for 30 min daily (20Hz, 3mA) for 4 weeks.
- We have previously shown that low level transcutaneous vagus nerve stimulation (LLTS) is antiarrhythmic and anti-inflammatory.

RESULTS

- **Figure 1. Study protocol.**
- **Figure 2. End point comparison of SBP measurements.** The active stimulation group showed significant attenuation of BP elevation compared to HS active plus MLA and HS sham groups.
- **Figure 3. End point comparison of echocardiographic parameters.** Left panel: Circumferential strain. Right panel: e’. Active stimulation resulted in a significant amelioration of echocardiographic parameters compared to sham and this effect was attenuated in the presence of MLA.
- **Figure 4. End point comparison of fibrosis measurements.** The active stimulation group showed significant decrease in fibrosis compared to sham and this effect was attenuated in the presence of MLA.
- **Figure 5. Effect of LLTS on myocardial gene expression – Ingenuity Pathway Analysis (IPA).** LLTS significantly changed the expression of genes involved in mitochondrial dysfunction, siruin signaling pathway and oxidative phosphorylation in comparison to HS sham.

CONCLUSIONS

- Autonomic modulation with LLTS attenuates the unfavorable changes in echocardiographic parameters and LV fibrosis induced by HS diet through its anti-inflammatory effects.
- The data support our hypothesis that inhibiting the anti-inflammatory effect of LLTS attenuates the antifibrotic effect.
- These results provide the basis for the examining the role of LLTS in patients with HFpEF.
- Further studies are required to examine the molecular mechanism of this difference.

REFERENCES

ACKNOWLEDGEMENTS

We thank the Laboratory for Molecular Biology and Cytometry Research at OUHSC for the use of the Core Facility which provided total RNA library construction, Illumina NovaSeq sequencing, and bioinformatics support.